

Prof. Berlinck graduated in Chemistry (1988) at the University of Campinas, Brazil. Obtained his PhD in Sciences (Organic Chemistry) at the Université Libre de Bruxelles (1992). In 1993 moved to the Universidade de São Paulo as assistant professor. During 1997-1998 was a visiting professor at the University of British Columbia (UBC), Canada, in collaboration with Professor Raymond J. Andersen (Departments of Chemistry and Earth and Ocean Sciences). Since 1993, Dr. Berlinck’s research interest included the discovery of pharmacologically active chemicals from marine invertebrates. During the period between 2001-2006 participated in the National Cooperative Drug Discovery Group program funded by the National Institutes of Health, leaded by Professor Chris M. Ireland (Department of Medicinal Chemistry, University of Utah, USA), working in collaboration with Professors Ireland and Andersen and the pharmaceutical company Wyeth-Ayerst. In 1998 started the first Brazilian program on the investigation of microbial secondary metabolism, including Streptomycete and fungi. Dr. Berlinck established collaborations with a number of Brazilian and international investigators, including specialists in cancer, inflammation and immunomodulation, antibiotics, parasitic diseases, in biodiscovery, organic synthesis and natural product biosynthesis. Dr. Berlinck supervised over 100 undergraduate MSc, PhD students and post-doctoral researchers and published over 150 articles in peer-reviewed journals.

Alexei Demchenko was born (1965), raised, and educated in Moscow, Russia. He graduated from the Mendeleev University of Chemical Technology of Russia with a Diploma (M.S.) in Chemical Engineering (1988) before joining the laboratory of the late Professor Kochetkov at the Zelinsky Institute of Organic Chemistry in Moscow. In 1993, he was awarded a Ph.D. in organic chemistry by the Russian Academy of Sciences for his work on the development of thiocyanate methodology for glycosylation. After two post-doctoral years under Kochetkov, he joined Professor Boons’ group at the University of Birmingham (UK) as a BBSRC post-doctoral research fellow. In 1998, he moved to the Complex Carbohydrate Research Center, University of Georgia (USA) as a research associate. In 2001, he joined the faculty at the University of Missouri – St. Louis (UMSL) as an Assistant Professor where he was promoted to the rank of Associate Professor with tenure (2007) and Professor (2011). In 2014, Demchenko was appointed Curators’ Distinguished Professor of Chemistry and Biochemistry. In 2021, Demchenko joined the faculty at Saint Louis University as Professor and Department Chair. His research interests are in the area of synthetic carbohydrate chemistry that include: streamlined synthesis of carbohydrate building blocks; novel glycosylation reactions; methods for stereocontrolling the glycosidic bond formation; strategies for expeditious assembly of complex glycans and glycoconjugates; synthetic vaccines and glycopharmaceuticals; human milk oligosaccharides and other food additives and ingredients; solid phase and automated synthesis; modification and conjugation of glycans to protein carriers, surfaces, and nanoparticles.

The research interests range from advanced techniques for electrosynthetic screening up to process development of electrosynthetic conversions. The electrifying of technically relevant transformations is investigated and novel electrochemical reactions established. This also covers renewables as well as pollutants as feedstocks. Prof. Waldvogel co-founded ESy-Labs GmbH which serves as contract R&D organization in electrosynthesis.

Dr Silvia Marchesan is an Associate Professor in Organic Chemistry at the University of Trieste; habilitated to Full Professorship in Organic Chemistry (2018). Her research focuses on the design of minimalistic peptide self-assembly for various uses in green solvents. Their original feature is heterochirality, whereby the different stereoconfiguration of amino acids at specific positions along a sequence of 2-5 residues plays a key role in their ability to adopt amphiphilic conformations, and establish non-covalent interactions that are key for function. A seminal paper in Chem (2018) was selected for the journal cover and amongst the top-10 best papers of the year. That work unravelled in continuo, from the molecular to the macro-scale, the divergent path followed by homochiral and heterochiral tripeptide stereoisomers in self-assembly, leading to amorphous aggregates, or nanostructured hydrogels, respectively. Subsequent work on dipeptides (ACS Nano 2020) showed that the stereoisomers’ difference is subtler, as they adopt the same backbone conformation leading to gelling nanotubes. She is also an active volunteer for the peptide international community, organized many relevant conferences, symposia, and received awards for her commitment to support women and junior scientists in their scientific careers. In 2024, Silvia initiated the COST Action SNOOPY on bioactive peptide assemblies to support the growth and strengthen the networking within the relevant international community, especially for the training and development of young researchers, and reaching out to neighbouring disciplines and countries, beyond UK and Europe.

Jonathan Nitschke received his bachelor’s degree from Williams College (USA) in 1995 and his doctorate from the University of California, Berkeley in 2001 under the supervision of T. Don Tilley. He then undertook postdoctoral studies with Jean-Marie Lehn in Strasbourg under the auspices of a US NSF fellowship, and in 2003 he started his independent research career as a Maître-assistant (fixed-term independent PI) in the Organic Chemistry Department of the University of Geneva. In 2007 he was appointed University Lecturer at Cambridge, where he now holds a Professorship. He is the recipient of the RSC Supramolecular Award (2024), an Honorary Fellowship of the Chinese Chemical Society (2024), the Izatt-Christensen Award in Supramolecular chemistry (2022), a Wolfson Research Merit Award of the UK Royal Society (2017), the International Award for Creative Work of the Japan Society of Coordination Chemistry (2016), the Bob Hay Lectureship of the Royal Society of Chemistry (2013), the Cram Lehn Pedersen Prize in Supramolecular Chemistry (2012), the Corday-Morgan Prize of the Royal Society of Chemistry (2011), the Dalton Transactions European/African Lectureship (2011), the Werner Prize of the Swiss Chemical Society (2007) and the European Young Chemist Award at the first EuCheMS Congress (2006). He won an ERC Starting Grant (2011-2016) and an ERC Advanced Grant (2017-2021). His research program investigates the self-assembly of complex, functional structures from simple molecular precursors and metal ions.

Los principales objetivos de nuestro laboratorio son aislar, purificar y estudiar estructuralmente polisacáridos obtenidos de diversas fuentes (algas, frutos, invertebrados). El estudio se direcciona especialmente a la detección de productos con actividad biológica (antiviral, antitumoral, antioxidante), propiedades funcionales de interés para la industria o con estructuras novedosas de interés académico. Además, se estudian la composición y estructura de las paredes celulares de frutos y relacionar los cambios operados en la pared celular en distintos estados de madurez y como consecuencia de distintas fisiopatías (que llevan a pérdidas económicas). El estudio de los proteoglicanos de esponjas tiene como objetivo de máxima la caracterización de aquellos relacionados con la agregación celular. Además, se modifican químicamente oligo- o polisacáridos aislados de fuentes naturales, con caracterización previa con el objetivo de mejorar sus actividades biológicas y sus propiedades reológicas. Se espera también poder correlacionar los datos estructurales obtenidos con los que se obtengan a partir del análisis de actividad biológica, propiedades físicas, etc., y fundamentalmente del análisis conformacional por modelado molecular, ya que la conformación de un polisacárido es uno de los factores determinantes de sus propiedades. Nos interesa extrapolar los modelos de di- y trisacáridos sulfatados provenientes de carragenanos y fucoidanos a formas polisacarídicas, y determinar finalmente las claves de su actividad biológica. También se modelará la reactividad de algunos carbohidratos. Se pondrá especial énfasis en el mejoramiento de la metodología experimental y computacional existente.

Prof. Dr. Margarita Aliaga.
Chemistry School, Chemistry and Pharmacy Faculty, Pontificia Universidad Católica de Chile.
The scientific interest of our group involves the supramolecular (radical) chemistry, development of fluorescent and colorimetric probes, reactivity in different media and sensing applications. Field: Physical Organic Chemistry.

Samer Gnaim had the privilege to study chemistry and biology at Tel-Aviv University, where he received his B.Sc. with honors. In 2013, he started a direct Ph.D. track in bio-organic chemistry with Prof. Doron Shabat. At this juncture, he had the opportunity to work on a broad spectrum of organic and bio-organic topics, including synthetic, supramolecular, and bio-related chemistry. In 2019, upon completing his PhD, Samer was awarded several postdoctoral fellowships to pursue his studies with Prof. Phil Baran at Scripps Research in California. There, he tackled the challenge of developing scalable synthetic electrochemical methods for sustainable desaturation of carbonyl compounds, and cobalt electrocatalyzed functionalization of unsaturated C-C bonds. In early 2023, Samer joined the Department of Molecular Chemistry and Material Sciences at the Weizmann Institute of Science as an assistant professor. Driven by the power of electrochemistry and the unique reactivity of low-coordinate boron species, his research focuses on sustainable and streamlined approaches to chemical synthesis—paving the way for new synthetic logics in constructing complex molecules.

The synthesis and spectroscopic properties of functional dyes such as corroles, porphyrins, diketopyrrolopyrroles and pyrrolopyrroles. The research is oriented toward application in such areas as two-photon absorption, ‘artificial photosynthesis’, excited state intramolecular proton transfer and fluorescence imaging. He is also interested in synthetic methodology – new methods for synthesis of heterocycles, helicenes and C-H activation.

My research interests are focused on the development and application of chiral mechanically interlocked systems. We design interlocked organocatalysts with confined, dynamic architectures to achieve efficient and controllable stereoselective transformations. A key focus is the stereoselective synthesis of β- and γ-lactams and other chiral derivatives from interlocked fumaramides. We also investigate how the mechanical bond influences the photochemical behavior of interlocked fluorescent systems, particularly in the mechanical protection of otherwise reactive or unexplored structures. Additionally, we develop stimuli-responsive assemblies—triggered by heat, light, or enzymatic activity—for the controlled release of molecular cargoes, and we integrate interlocked components into metal–organic and covalent organic frameworks to build multifunctional materials with potential applications in nanotechnology.

Márcio Weber Paixão received his BSc in Chemistry in 2003 from the Federal University of Santa Maria (UFSM), Brazil. In 2007, he completed his Ph.D. under the supervision of Prof. A. L. Braga (UFSM, Brazil) and co-supervision of Prof. Dr. Ludger Wessjohann (Leibniz Institute of Plant Biochemistry – IPB Halle, Germany), working on catalytic enantioselective methods. He subsequently carried out postdoctoral studies at the University of São Paulo (Brazil) and later at the Center for Catalysis, Aarhus University (Denmark), under the guidance of Prof. Karl A. Jørgensen. In 2010, he started his independent academic career at the Federal University of São Carlos (UFSCar), Brazil. In 2012, he was a visiting professor in the group of Prof. Carlos F. Barbas III at The Scripps Research Institute (TSRI), USA. From 2016 to 2017, he held a sabbatical research stay at the University of California, Berkeley, working with Prof. F. Dean Toste. His research focuses on the development of new catalytic methodologies, including asymmetric organocatalysis and photocatalysis. In addition, his work explores multi-component reactions based on isonitrile chemistry (stereoselective Ugi-type reactions). These strategies are applied to the construction and modification of biomolecules, particularly amino acids, peptides, and saccharides.

Comencé mi carrera investigadora en el año 2000, tras la concesión de una beca Intercampus de la Agencia Española de Cooperación Internacional (AECI) en Córdoba (Argentina). Me licencié en Química (Universidad de Granada, España) en 2001 y obtuve mi doctorado en Catálisis y Ciencia de los Materiales (Universidad de Alicante, España) en 2006. En 2007, me trasladé a Madrid para realizar una estancia postdoctoral en el Consejo Superior de Investigaciones Científicas (CSIC, Instituto de Química Física Rocasolano). En 2008, obtuve una beca postdoc Fulbright para realizar estudios sobre la conversión catalítica de biomasa en combustibles y productos químicos en el grupo de investigación del profesor James Dumesic, en la Universidad de Wisconsin-Madison (EEUU). En octubre de 2012, me ofrecieron un puesto de Investigador Senior en Abengoa Research, la división de I+D de la multinacional Abengoa (Sevilla, España). Durante este periodo, desarrollé tecnologías para la producción de biocombustibles avanzados mediante la conversión catalítica de biomasa, entre otras tareas. En 2017, recibí una beca Ramón y Cajal del Gobierno de España para desarrollar mi propia investigación en la Universidad Loyola (Sevilla, España), donde actualmente soy Catedrático y dirijo el Grupo de Investigación “Materiales y Sostenibilidad”. En 2025 fui Profesor Visitante en el departamento de Ingeniería Química de la Universidad de Wisconsin-Madison durante 6 meses con una beca de la Fundación Fulbright.
Soy coautor de más de 70 artículos en revistas SCI, incluyendo uno en Science (considerado uno de los 30 mayores avances químicos del año según Chemistry World), 8 capítulos de libros, un buen número de revisiones de alto impacto sobre la conversión catalítica de biomasa y 4 patentes (una de ellas que trata sobre la conversión catalítica de celulosa en combustible Diesel y gasolina que está licenciada). Tengo un índice h de 41 y acumulé más de 8000 citas. Actualmente soy evaluador experto de Horizonte Europa para la Comisión Europea en Bruselas (Bélgica) y para la Agencia Estatal de Investigación (AEI) de España. En 2022, 2023 y 2024, fui incluido en el ‘World´s Top 2% Scientists Ranking’ emitido por la prestigiosa Universidad de Stanford.

La Dra. Fontana es egresada de las carreras de Química Farmacéutica y Maestría en Química de la Facultad de Química de la Universidad de la República (UdelaR). Realizó su doctorado en Química en el Departamento de Química Orgánica de la Universidad de Estocolmo, bajo la dirección del Prof. Göran Widmalm, especializándose en el estudio estructural y conformacional de polisacáridos bacterianos empleando espectroscopía de RMN. Posteriormente, llevó a cabo una instancia postdoctoral en el Departamento de Bioquímica y Biofísica del Instituto Karolinska, bajo la supervisión de la Dra. Katja Petzold, centrada en el estudio de la dinámica conformacional de RNAs no codificantes. Actualmente se desempeña como Profesora Agregada en el Departamento de Química del Litoral (CENUR Litoral Norte, UdelaR), es investigadora del PEDECIBA Química e integra el Sistema Nacional de Investigadores (SNI) de la Agencia Nacional de Investigación e Innovación (ANII) de Uruguay. Sus intereses de investigación se centran en el estudio estructural y conformacional de carbohidratos y glicoconjugados, empleando espectroscopía de RMN y técnicas de modelado molecular, así como en el desarrollo de metodologías para el estudio de carbohidratos marcados isotópicamente con ¹³C y/o ¹⁵N. Dentro del área biotecnológica, se destaca su interés en el desarrollo de técnicas de tipificación bacteriana empleando espectroscopía de RMN. Su línea de trabajo incluye además la bioprospección de lectinas y glicoconjugados en especies nativas, orientada al aprovechamiento sustentable de la biodiversidad. Actualmente, desarrolla líneas de trabajo interdisciplinarias enfocadas en el estudio de interacciones entre lectinas y carbohidratos, con aplicaciones en el diseño y desarrollo de biosensores, vacunas y bioinsecticidas.


Deep Eutectic Solvents (DESs) are an emerging class of unconventional solvents, characterized by low toxicity, biodegradability, and high structural tunability. DES are made of a combination of an hydrogen bond donor (HBD) and a hydrogen bond acceptor (HBA), between which an extended hydrogen bond network (HBN) is established leading to a stabilization of the mixture and its existence in liquid state at room temperature. Although their application is widespread across different fields, the understanding of their chemistry and of the molecular interactions established within a DESs are still under debate. Beside a mere academic interest, this point is extremely important to kickstart a rational design of DESs and the selection of the most promising solvent for a tailored application. Our research, carried out across the University of Rome, La Sapienza and the University of Turin, deals with the molecular understanding of HBD-HBA interactions and their effect in the stabilization of the mixture, as well as their interplay with the solute. Such a study, which is mainly focused on glycerol-based DES among others, is bolstered by a multi-technique investigation approach combining electrochemical, spectroscopic, and diffraction techniques supported by computational analyses. Thanks to the deeper (but never deep enough) knowledge of these molecular interactions, we were able to select, design and engineer DESs specifically targeting frontier applications ranging from electrolytes for next-generation sustainable energy storage devices to catalyst-free organic synthesis, from sequestration agent for CO2 to iodine-sponges. Our multidisciplinary research highlights the versatility of DESs as molecular platforms for innovation in energy, synthesis, and environmental technologies, aligning with the broader goals of green chemistry and sustainable development.
